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Abstract We present the initial implementation of a
determinant-based general-order coupled cluster
method which fully accounts for relativistic effects within
the four-component framework. The method opens the
way for the treatment of multi-reference problems
through a state-selective expansion of the model space.
The evaluation of the coupled cluster vector function
is carried out via relativistic configuration interaction
expansions. The implementation is based on a large-
scale configuration interaction technique, which may
efficiently treat long determinant expansions of more
than 108 terms. We demonstrate the capabilities of the
new method in calculations of complete potential energy
curves of the HBr molecule. The inclusion of spin–orbit
interaction and higher excitations than coupled clus-
ter double excitations, either by multi-reference model
spaces or the inclusion of full iterative triple excitations,
lead to highly accurate results for spectral constants of
HBr.
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1 Introduction

The most efficient many-body theory to approach the
exact energy in atomic and molecular electronic struc-
ture calculations is today provided by the coupled
cluster (CC) model. In the treatment of molecules con-
taining light atoms—i.e., up to the third row of the
periodic table—the use of extensive one-particle basis
sets and excitation levels beyond quadruples in non-
relativistic CC calculations [13,31] allows for the deter-
mination of spectroscopic properties with an accuracy
where relativistic contributions beyond scalar terms
become important. In heavy-element systems, on the
other hand, relativistic effects may be as important or
even more important than electron correlation. Accu-
rate electronic structure calculations of molecules with
elements from the sixth row and beyond require a con-
sistent treatment of relativistic effects, and here the
inclusion of the spin–orbit interaction in quantum chem-
ical methodology on the same footing as electron corre-
lation comprises the greatest challenge.

Relativistic CC calculations for small molecules con-
taining heavy elements can presently not attain the same
precision as non-relativistic CC calculations for small
molecules containing light elements. The limiting fac-
tors are the number of electrons which need to be corre-
lated, the size of the required one-particle basis sets, the
more complicated electronic structure of many heavy-
element compounds, and the less-developed technology
for relativistic CC calculations.

The CC model currently witnesses rapid progress,
with modern developments concerning iterative excita-
tion levels higher than CC doubles [5,16,21,22,29] and
various multi-reference (MR) approaches [1,20,23,29].
However, none of these methods have been generalized
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to a relativistic formalism, which we understand as also
including spin–orbit interaction terms. The 4-component
implementations by Visscher et al., Kramers-restricted
[36] and unrestricted [37], respectively, are not gener-
ally applicable to open-shell/multi-reference states. The
only relativistic multi-reference approaches reported to
the date are the Fock-Space CC implementations by
Landau et al. [25] and Visscher et al. [39]. These meth-
ods, as the Fock-space approach in general, suffer from
the use of a common orbital basis for all of the occur-
ring ionized systems. When the Fock space sector is
increased to higher than ±2, the calculations become
difficult to converge. Calculations with 4 or 5 open shells
are therefore not possible in general with current FSCC
implementations. The treatment of a large variety of
heavy-element systems, especially many compounds
from the d- and f -block elements, is therefore out of
reach with the available FSCC methodology.

In this paper, we present the first relativistic general-
order coupled cluster method which moreover is capa-
ble of treating multi-reference problems and molecules
with an arbitrary number of unpaired electrons. The
essential idea is to generalize a non-relativistic variant of
state-specific MRCC to the relativistic formalism, which
retains the advantages of the single-reference approach
and which allows for a flexible definition and robust
treatment of MR expansions.

In the following section (2) we review this state-
selective multi-reference approach and the underlying
relativistic theory of our implementation. Section 3 gives
a detailed account on the implementation of the method,
and in Sect. 4 we present an initial application. We unfold
some of the capabilities of the new method in this appli-
cation. Some aspects, however, like the treatment of
a large number of unpaired electrons in the reference
state, have been demonstrated successfully with the non-
relativistic precursor method [24] and for the relativistic
case will be left for future work.

2 Theoretical background

2.1 Multi-reference coupled cluster approach

There is to the date no general consensus on how a
multi-reference coupled cluster theory should be formu-
lated. The original idea for our type of multi-reference
CC approach is ascribed to Oliphant and Adamowicz
[27,28]. In the present approach which is based on the
generalized implementation of these ideas by Olsen
[24,29] the projection manifold is extended to simulate
excitations from additional reference functions beside
those from the Fermi vacuum state. The reference state

Fig. 1 A generalized active space CC reference space generated
by a zero-order expansion eT̂0

acting on a closed-shell (or sim-
ple high-spin open-shell) reference state. Although some active
hole orbitals are now unoccupied and some active particle orbitals
occupied, the original occupation of the orbitals is “memorized”
in the CC expansion (state-selectivity)

is formally re-interpreted as a multi-configuration state
including the additional reference functions which is
generated via a zero-order expansion. The parameters
of the reference functions which are kept fixed in the
implementations by Oliphant et al. are reoptimized in
the present approach.

In Fig. 1 we illustrate the expanded reference state.
The number of active spaces is here arbitrary, as are the
occupation constraints of the active spaces with respect
to electrons (generalized active spaces, GAS). By these
means, a very flexible definition of reference states is
possible which allows for the efficient description also
of complicated electronic structures, as often encoun-
tered in heavy-element molecules. More details on GAS
expansions can be found in the literature [8,10].

The procedure retains the advantages of the single-
reference formalism, especially commutative cluster
operators, although higher excitations than those aris-
ing from a standard single-reference ansatz are included
in the amplitude equations. The drawback of this for-
malism—in contrast to FSCC or the state-universal an-
satz [19,20] or a new multi-reference exponential ansatz
by Hanrath [12]—is the variance with respect to the
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choice of the Fermi vacuum, because despite the multi-
determinantal nature of the reference state a “memory”
of the occupied and unoccupied orbitals in the origi-
nal reference state is retained in the cluster expansion.
This also explains the term “state-selective”. In other
words, the various reference functions are not strictly
treated on the same footing. The remedy, a separate
cluster expansion for every reference function, leads to
the state-universal Hilbert-space CC theory which is far
less efficient [19]. The loss of Fermi vacuum invariance,
however, does not appear to be of crucial importance
in application and problems can be avoided by proper
choices of reference spaces.

2.2 Relativistic approach

The environment of our implementation is a local ver-
sion of the relativistic quantum chemistry program pack-
age DIRAC [11]. Various available Hamiltonians
within the package can be used directly by our CC
program, such as the 4-component operators Dirac–
Coulomb, spin-free [4], and Levy Leblond [26], and
2-component operators such as the Infinite-Order Two-
Component (IOTC) form of the Barysz–Sadlej–Snijders
(BSS) Hamiltonian [3,18]. There are two essential fea-
tures that allow the use of identical codes for 2- and
4-component methods. When a 4-component operator
is used, the negative-energy states are discarded after
the spinor optimization step and the following integral
transformation, which can be viewed as an a posteri-
ori no-pair approximation. The set of transformed inte-
grals therefore is structurally identical to that from a
two-component operator where the no-pair approxi-
mation has been invoked a priori, albeit numerically
different. Second, the one-particle functions defined by a
spinor optimization are by construction pairwise related
through time-reversal symmetry, thus Kramers-paired
spinors, irrespective of the Hamiltonian in use.

The inclusion of spin–orbit interaction in a rigorous
manner eliminates the non-relativistic S and MS as good
quantum numbers already in the one-particle functions,
which are in this case (2- or 4-component) spinors. We
generally refer to Kramers-paired spinors defined by the
action of the time-reversal operator K̂ as

K̂Φi = Φi

K̂Φi = −Φi. (1)

Similar to spin projection, we denote the Kramers pro-
jection MK of the spinor as

MK = 1
2

for Φi and

MK = −1
2

for Φi.

Likewise for a many-particle state which we represent
by strings of creation operators for the Kramers-paired
spinors, the auxiliary quantum number MK becomes

MK = 0 for the string a†
i a†

j

MK = 1
2

for the string a†
i a†

j
a†

k

etc.

Beside a partitioning of the Hamiltonian operator, the
primary use of the auxiliary quantum number is to clas-
sify many-particle states. It may therefore be used to
define restricted excitation manifolds and cluster oper-
ators in the context of relativistic CC theory, similar to
the way restricted Configuration Interaction (CI) and
Multi-Configuration (MC) SCF expansions have been
defined in the relativistic framework earlier [9,10].

One- and many-particle functions are consistently
classified according to irreducible representations of
double point groups which are limited to the binary
groups (D2h and its subgroups). In a formulation using
quaternion algebra and based on the Frobenius–Schur
lemma [32,35] these double groups decompose into real-
valued (D∗

2h, D∗
2, and C∗

2v) and complex-valued groups
(C∗

2h, C∗
2, C∗

s , C∗
i , and C∗

1). For the former, real alge-
bra can be used throughout whereas for the latter the
imaginary parts of all occurring quantities need to be
considered as well. The treatment of spin–orbit inter-
action is therefore possible for a large fraction of small
molecules without the necessity to account for complex
algebra, but merely by an extended set of integrals com-
pared to the non-relativistic framework.

Our current implementation treats the real-valued
and some of the complex-valued double groups (C∗

2h, C∗
2,

and C∗
s ). The remaining groups, the so-called

quaternion-matrix groups (C∗
i and C∗

1), require mod-
ifications in our configuration interaction program [9]
and are not implemented yet.

3 Implementation

3.1 Coupled cluster vector function

The essential quantity to be evaluated in the course of a
coupled cluster optimization is the coupled cluster vec-
tor function Ωµ for a given element µ of the excitation
manifold:
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Ωµ =
〈
µ

∣∣∣e−T̂ĤeT̂
∣∣∣ Ref

〉
(2)

The cluster operators T̂ = ∑
m T̂m are now generalized

to the relativistic framework, which entails the possi-
bility of flipping the Kramers projection along with the
excitation:

T̂1 =
∑

ia

{
tai τ̂

a
i + ta

i
τ̂ a

i
+ tai τ̂

a
i + ta

i
τ̂ a

i

}
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i<j,a<b

{
tab
ij τ̂ ab

ij + tab
ij

τ̂ ab
ij

+ tab
ij

τ̂ ab
ij

+ tab
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+ tab
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+ tab
ij

τ̂ ab
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+ tab
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}

etc. (3)

In the trivial case of spin orbitals, the Kramers flipping
would correspond to the introduction of terms account-
ing for spin–orbit interaction. In our implementation,
this special case is generalized to be applicable with any
kind of one-particle space of Kramers-paired functions,
e.g., 2- or 4-component spinors. As we here introduce no
time-reversal symmetry restrictions on the amplitudes,
we call this approach Kramers-unrestricted relativistic
CC, referring to the many-particle but not the one-
particle space. The excitations are categorized accord-
ing to the change in the auxiliary quantum number MK,
e.g., τ̂ a

i corresponds to ∆MK = −1, τ̂ ab
ij

to ∆MK = +1,

τ̂ ab
ij

to ∆MK = 0, etc.

The evaluation of the CC vector function proceeds
in an analogous fashion as described in reference [29],
where the CC vector function is obtained in four steps
which are based on CI expansions and string manipu-
lations. Although this formalism is rather inefficient, it
allows the generation of a general relativistic CC code
by reusing much of the code which we previously have
developed for relativistic CI [9,10]. Furthermore, the
developed code may be used in calculations where only
a small number of electrons is correlated, and will pro-
vide a test code for the more advanced and efficient
relativistic CC codes currently under development.

In the following, we first consider the general features
of this CI-based vector function implementation as also
mentioned in reference [29] and then review the four
required steps in the evaluation.

As e−T̂ does not decrease the excitation rank of the
state it is acting on, the configuration space spanned by
ĤeT̂ |Ref〉 can be restricted to the space of the excita-
tion manifold 〈µ|. Since the Hamiltonian is an operator
with a maximum de-excitation (down) rank of 2, this

Fig. 2 Reduced linear transformation step for the CI-based
evaluation of the CC vector function. cext is a reference vector
from the extended space which is projected onto a reduced space
σ red defined by the CC excitation manifold

implies that the evaluation of ĤeT̂ |Ref〉 has to be car-
ried out in a space with a maximum excitation level
increased by 2 relative to the excitation manifold. For
example, in a CCSD calculation the expression eT̂ |Ref〉
can be restricted to atmost quadruple excitations. We
illustrate the linear transformation step ĤeT̂ |Ref〉 in
Fig. 2. The computational scaling of this procedure is
given as On+2 Vn+2 where O is the number of occu-
pied spinors, V the number of virtual spinors and n is
the highest CC excitation level in the calculation. Com-
pared to a CC implementation with an optimal scal-
ing as On Vn+2 (such as the string-based non-relativistic
implementation of Kállay et al. [23]) this reduced effi-
ciency therefore limits the number of electrons which
may be correlated (roughly up to 10 or 12) and the size
of the employed one-particle basis sets (roughly up to
triple-zeta quality). Due to the use of the highly effi-
cient direct CI technique based on Generalized Active
Space expansions [9,10] fairly large calculations with
more than 1 × 108 Slater determinants in the extended
space are nevertheless possible.

In the following, we describe the relativistic imple-
mentation focussing on the individual steps required for
the CC vector function.

Step 1:

|a〉 = eT̂ |Ref〉, expansion of the reference vector.

|a〉 =
(∑

n=0

1
n! T̂n

)
|Ref〉

= |Ref〉 + T̂ |Ref〉 + 1
2

T̂
{

T̂ |Ref〉
}

+ 1
6

· · · (4)

The expansion is carried out by invoking the routines for
calculating a CI sigma vector repeatedly, i.e., once for
each term T̂ |Ref〉, as described in detail in the context
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Table 1 Excitation-class ordered operators in second quantiza-
tion, corresponding integrals, and associated change in Kramers
projection

Operator Integral class Kramers projection

a†
i aj hij ∆MK = 0

a†
i
aj hij ∆MK = 0

a†
i a†

kalaj (ij|kl) ∆MK = 0
a†

i
a†

k
alaj (ij|kl) ∆MK = 0

a†
i a†

k
alaj (ij|kl) ∆MK = 0

a†
i aj hij ∆MK = +1

a†
i
aj hij ∆MK = −1

a†
i a†

kalaj (ij|kl) ∆MK = +1

a†
i
a†

k
alaj (ij|kl) ∆MK = −1

a†
i a†

kalaj (ij|kl) ∆MK = +2

a†
i
a†

k
alaj (ij|kl) ∆MK = −2

of relativistic CI theory [9] and relativistic MCSCF the-
ory [10]. In this step, the contraction is not performed
with integrals, however, but with the CC amplitudes of
the current iteration.

A restricted set of excitations may be defined by
reducing the range of allowed MK values for the con-
struction of excitations on input. This leads to approxi-
mate CC calculations within a reduced coupling scheme.
The expansion in step 1 is otherwise truncated when the
highest excitation level has been reached which may
couple to the excitation manifold, in line with the argu-
ments in the above discussion (Sect. 3.1).

Step 2:

|b〉 = Ĥ |a〉: linear transformation of the expanded ref-
erence vector.

This step again corresponds to the calculation of a lin-
ear transformation (CI sigma vector) of the expanded
reference vector |a〉. The contraction is now carried out
with integrals over Kramers-paired spinors which are
classified according to excitation classes and the associ-
ated change of the auxiliary quantum number MK. This
is displayed in Table 1. This excitation class formalism
does not only define the structure of the Hamiltonian
operator (with a ∆MK range of {+2, . . . , −2}) but is also
used in the definition of the cluster excitation operators
in Eq. (3).

A relativistic sigma vector therefore consists of a sum
of five contributions according to

σ =
∆MK=+2∑
∆MK=−2

σ∆MK (5)

with a sample contribution corresponding to the parti-
tion ∆MK = +1 decomposed into 1- and 2-electrons
parts

σ+1(T †, T †) =
∑

ij

∑
S

〈
T †|a†

i |S†
〉∑

S

〈
T †|aj|S

†
〉

· hij · CS ,S
+

∑
i≥k

lj

∑
S

〈
T †|a†

i a†
kal|S†

〉 ∑

S

〈
T †|aj|S

†
〉

·
[(

ij|kl
)

−
(

kj|il
)]

· CS ,S

+
∑

ik
l≥j

∑
S

〈
T †|a†

i |S†
〉 ∑

S

〈
T †|a†

k
alaj|S

†
〉

·
[(

li|jk
)

−
(

ji|lk
)]

· CS ,S , (6)

where S† denotes a string of unbarred creation oper-
ators. A full account of the sigma vector partitions is
given in reference [8].

As discussed above, the vector ĤeT̂ |Ref 〉 should be in
the space of atmost n-fold excitations whereas eT̂ |Ref 〉
may be in the space of n + 2-fold excitations. The oper-
ation count of this step thus scales as On+2Vn+2.

The efficiency of the direct CI steps in terms of
required computer memory benefits from the batch-
ing of coefficients in the linear transformation steps. In
terms of speed, the string-based CI algorithm [10,30]
allows for the treatment of large expansions as no explicit
comparison of configurations/occupations is carried out
and higher than double excitations are treated on the
same footing as double excitations.

Step 3:

|c〉 = e−T̂ |b〉, expansion of the transformed reference
vector.

|c〉 =
(∑

n=0

−1
n! T̂n

)
|b〉

= |b〉 − T̂ |b〉 + 1
2

T̂
{

T̂ |b〉
}

− 1
6

· · · (7)

The expansion is carried out in complete analogy with
step 1. It is assured that the expansion is restricted to
the excitation manifold 〈µ|.

Step 4:

Ωµ = 〈µ|c〉, evaluation of transition density matrix ele-
ments.

Ωµ =
〈
Ref

∣∣∣τ̂ †
µ

∣∣∣ c
〉
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The projection of the excitation manifold 〈µ| against
the expanded transformed reference vector |c〉 corre-
sponds to the calculation of transition density matrix
elements and yields the CC vector function. Employ-
ing the concise implementation described in references
[9,10] the evaluation becomes equivalent to the calcula-
tion of CI sigma vectors, where instead of a contraction
with integrals a contraction with expansion coefficients
is performed. For the present case, the left-hand vector
of expansion coefficients is a unit vector. As this step
is carried out in the space of atmost n-fold excitations,
it scales as OnVn+2 and is therefore significantly faster
than step 2.

3.2 Optimization algorithm

In the current implementation, we employ the follow-
ing straightforward iterative algorithm: Given the CC
amplitudes t of iteration n and the CC vector function
Ω(t) computed from these (as discussed in Sect. 3.1) the
equations

∆tn = J−1
n · Ωn(t) (8)

tn+1 = tn + ∆tn (9)

are solved selfconsistently, until the change of the CC
energy calculated from the current iteration’s ampli-
tudes is smaller than a predefined threshold value.
J denotes the CC Jacobian, the inverse of which may
be approximated in different fashions. We have tested
the simplest option with an inverse Jacobian where only
the diagonal elements are considered. Whereas molec-
ular calculations close to the equilibrium bond distance
on bound potential energy curves converge in a satisfac-
tory manner, the diagonal approximation gives diver-
gent properties when the bond is stretched. We therefore
implemented an algorithm where the Jacobian is approx-
imated by a set of subspace vectors. Within this scheme,
we obtain fast convergence for complete potential curves
in both single-reference and multi-reference CC models.
All calculations reported in the following section have
therefore been carried out with the subspace Jacobian
optimization.

4 Application to the HBr molecule

To demonstrate that our newly implemented method is
operational and to outline its potential we discuss an
initial application to a diatomic molecule and calculate
full potential energy curves of the ground state at var-
ious levels of theory and computational demand. This

investigation therefore does not aim at highest precision
for the obtained quantities.

4.1 Objective and setup

The spectroscopic properties of the HBr molecule are
significantly influenced by relativistic effects and elec-
tron correlation. Furthermore, this molecule is heavy
enough to elucidate these effects and small enough to
keep the computational demand of this pilot study lim-
ited. In particular, we investigate the importance of
spin–orbit interaction by comparing with the
4-component spin–orbit free formalism of Dyall [4]. In
work to be published [6,33] we have interfaced the orig-
inal non-relativistic CC program to this 4-component
spin–orbit free formalism. Here, the transformed molec-
ular integrals are structurally equivalent to a set of inte-
grals in a scalar relativistic (one-component) framework
such as the Douglas–Kroll–Hess formulation [14,15,40],
but the Hamiltonian for obtaining the integrals remains
4-component. The corresponding CC calculations are
thus based on non-relativistic point-group symmetry.
Moreover, a proper description of the dissociation of
the molecule requires the inclusion of higher excita-
tions, which are studied also by exploiting multi-ref-
erence approaches. We finally compare our results to
MRCI calculations carried out with the spin–orbit free
program LUCITA [7] and the fully relativistic program
LUCIAREL [9,10] where the same basis sets and active
orbital spaces are used as in the corresponding CC cal-
culations.

We use two different uncontracted basis sets, in the
following denoted as DZ and TZ. The smaller set DZ
consists of the sp-pvdz set from the MOLFDIR suite
in the DIRAC program package [11] for Br (15s12p6d)
and H (4s1p). The larger set TZ is the relativistic finite
nucleus optimized triple zeta basis set including valence-
correlating functions for Br (23s16p10d1f ) and the
cc-pVTZ of the MOLCAS5 package [2] for H (5s2p1d).
Virtual orbitals beyond an energy of 10 a.u. are dis-
carded which does not comprise a mentionable approx-
imation here. All calculations are performed with the
Dirac–Coulomb Hamiltonian, i.e., without two-electron
contributions of spin-other-orbit type (Gaunt term). As
Visscher et al. [38] have shown for HBr, the influence of
these lacking terms on the properties studied here is at
least one order of magnitude smaller than the errors we
will discuss.

We correlate 6 and 8 electrons occupying σ1/2, a π1/2,
and a π3/2 orbital formed from the atomic valence orbi-
tals of Br (4p) and H (1s), and in addition Br (4s) in
the case of 8 electrons, respectively, in the reference
state. A spin–orbit free benchmark calculation including
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the Br d electrons (18 electrons in total) and full triple
excitations is also carried out to elucidate the effect of
core–electron correlation. A fully relativistic CCSDT
with 18 correlated electrons is feasible in principle with
our current implementation, but has not been carried
out due to extensive memory and computing time
requirements. We perform single-reference (SR) and
multi-reference calculations, where the latter are defined
by a Complete Active Space (CAS) expansion with 6 (8)
electrons in 4 (5) orbitals. The correlating orbital is the
antibonding σ ∗

1/2 with bromine and hydrogen contribu-
tions. All calculations are performed in the (double)
point group C(∗)

2v .

4.2 Results and discussion

The results for the equilibrium bond length, the har-
monic vibrational frequency, and the dissociation energy
for various CC models and Hamiltonians are compiled
in Table 2. The molecular bond is well described at all
computational levels with very small deviations from
experiment. For both basis sets the multi-reference treat-
ment stretches the bond as does the inclusion of higher
excitations in the calculation including full iterative tri-
ples (CCSDT) and MR models (MRCCSD). The same
stretching is observed when spin–orbit interaction is
included which is due to a weakening of the bond by
a reduced σ -bonding character of the bonding valence p
orbital on bromine. Increasing the basis set from DZ to
TZ reduces the bond length and brings it closer to the
experimental value. Correlating the 4s electrons results
in a slight stretching of the bond which is compensated
when the Br d electrons are included (CCSDT (18)). The
bond contraction is caused by allowing for excitations
out of the diffuse Br d orbitals. Spin–orbit coupling will
lead to a bond elongation which almost exactly com-
pensates for the final minute deviation of −0.0002 Å
from the experimental value. However, we expect that
the error from basis set incompleteness or the basis set
superposition error (BSSE) with the TZ set are in the
same order of magnitude.

For most of the calculations, an elongation of the
bond is accompanied by a reduction of the harmonic fre-
quency. The multi-reference methods produce in general
somewhat lower harmonic frequencies than the corre-
sponding single-reference method. Spin–orbit coupling
reduces the harmonic frequency by 7 cm−1 in the TZ
basis and by 6 cm−1 in the DZ basis. In the strive for
harmonic frequencies with an accuracy of a few cm−1,
spin–orbit coupling is thus required even for a closed-
shell molecule like HBr.

Table 2 Spectral constants of HBr using various CC models and
the corresponding CI models with (SO) and without (SOF) spin–
orbit interaction, single-reference and multi-reference (MR), and
correlating (n) electrons

Method Re [Å] ωe [cm−1] De [eV]

DZ SOF CCSD (6) 1.4148 2705.7 4.19
DZ SOF MRCISD (6) 1.4164 2693.7 3.86
DZ SOF MRCCSD (6) 1.4162 2691.1 3.88
DZ SO CCSD (6) 1.4153 2697.8 4.05
DZ SO CCSDT (6) 1.4159 2690.8 3.74
DZ SO MRCISD (6) 1.4173 2678.7 3.72
DZ SO MRCCSD (6) 1.4173 2685.2 3.73
TZ SOF MRCISD (6) 1.4145 2675.1 4.04
TZ SOF MRCCSD (6) 1.4148 2675.1 4.05
TZ SO MRCISD (6) 1.4151 2668.4 3.90
TZ SO MRCCSD (6) 1.4154 2668.0 3.90
TZ SOF MRCISD (8) 1.4180 2641.4 3.90
TZ SOF MRCCSD (8) 1.4192 2637.1 3.90
TZ SOF CCSDT (8) 1.4178 2647.3 3.96
TZ SO MRCISD (8) 1.4187 2634.9 3.77
TZ SO MRCCSD (8) 1.4193 2630.6 3.76
TZ SOF CCSDT (18) 1.4142 2663.9 4.01
TZ SOF CCSDT (18) +∆SO 1.4143 2657.4 3.77
Exp. [17] 1.41444 2648.975 3.92
apVTZ SO CCSD(T) (26) [34] 1.408 2706 3.92

Whereas the difference between MRCI and MRCC
calculations is negligible for the small number of 6 cor-
related electrons, it becomes more pronounced when
8 electrons are correlated, and here the harmonic fre-
quency is the property which is most affected (−4 cm−1).
The error of 15 cm−1 observed for the SOF CCSDT (18)
calculation is explained to a large part by the neglect
of spin–orbit interaction, and finally also by basis set
incompleteness or the BSSE which increases the har-
monic frequency.

The largest differences between the various calcula-
tions are observed for the dissociation energy. Clearly,
single-reference CCSD treatments do not yield satisfac-
tory results as they give too high energies for the sepa-
rated atoms. The multi-reference calculations decrease
the dissociation energy significantly. We illustrate the
effect of the multi-reference treatment on full poten-
tial curves in Fig. 3 where the difference between the
single- and multi-reference methods becomes obvious.
The inclusion of higher excitations can of course also
be achieved by increasing the general excitation level
to full triples, as shown in Table 2. This calculation
is more expensive computationally, though, than the
MRCCSD run and does not give a higher accuracy.
Addressing spin–orbit interaction, the decrease in dis-
sociation energy has two sources: First, as already men-
tioned, there is a bond weakening due to the increased
π character of the bonding spinor, and second, the spin–
orbit splitting lowers the energy of the bromine ground
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Fig. 3 Potential curves of the ground state of HBr neglecting
(SOF) and including (SO) spin–orbit interaction. The energy off-
set is −2, 605 EH

state in the atomic limit. The latter effect is the domi-
nating.

The dissociation energy varies strongly with the extent
of the basis set and the number of correlated electrons.
Clearly, for obtaining the right answer for the right rea-
son, a large basis set has to be used and at least 18
electrons have to be correlated. The dissociation energy
resulting from the TZ SOF CCSDT (18) calculation is
too high by roughly 0.1 eV. The increase of the disso-
ciation energy through core–electron correlation is also
found by Styszyński [35] at the CCSD(T) level (see also
Table 2 for one reference calculation). However, spin–
orbit interaction (as reported here) and a counterpoise
correction [39] decrease the dissociation energy in this
order of magnitude.

For a final comparison with experiment, we add a
spin–orbit shift (+∆SO) to the properties obtained with
the TZ SOF CCSDT (18) model which is the difference
between the values with and without spin–orbit inter-
action at TZ MRCCSD(8) level. The bond length and
vibrational frequency are now in excellent agreement
with experiment, but the dissociation energy is slightly
too low most likely due to remaining correlation (num-
ber of electrons) and basis set errors.

All of the calculations have been performed in ser-
ial on a Linux cluster equipped with Pentium IV Xeon
2.4 GHz processors, except for TZ SO MRCCSD(8)
for which we required a machine with more core mem-
ory (IBM Regatta Power 4+). A single-point calcula-
tion at TZ SO MRCCSD(6) level which included about
36 × 106 terms in the extended CI space finished in
one to two days with an allocation of roughly 3 GB
of core memory. The spin–orbit free calculations TZ
SOF CCSDT(18) were slightly less demanding, com-
putationally. When correlating eight electrons including

spin–orbit interaction (TZ SO MRCCSD(8), 224 × 106

terms in the extended space) the demand increased to
1 week runtime and roughly 12 GB of allocated core
memory.

5 Conclusions and outlook

We present the initial implementation of a fully relativis-
tic CC method which allows for multi-reference expan-
sions and higher than CC double excitations. The current
version is very general with respect to the definition of
multi-reference spaces by means of the GAS technique,
but it lacks optimal efficiency due to the CI-driven CC
vector function evaluation. In a showcase application we
demonstrate its applicability in the dissociation problem
of the HBr molecule. Here, we show the effect of includ-
ing spin–orbit interaction and higher excitations in cal-
culations of full potential energy curves of the electronic
ground state. When using multi-reference expansions
and a basis set of triple-zeta quality, the final results for
spectral properties of the molecule are in close agree-
ment with experiment. The method is prepared for the
application to heavy-element systems with a large num-
ber of open shells such as small actinide molecules.

For the treatment of systems where a large number of
electrons needs to be correlated, i.e., exceeding about 10
to 12, the efficiency bottleneck forces us to alter the algo-
rithm for evaluating the CC vector function. In current
work, we are generalizing a commutator-driven evalua-
tion of the CC vector function as implemented for the
non-relativistic case by J. Olsen (unpublished) to the rel-
ativistic framework. This method will exhibit the optimal
scaling of On Vn+2 as do conventional CC implementa-
tions and will open for the more accurate treatment of
heavy-element compounds with a large number of cor-
related electrons and extensive basis sets.

The Kramers-unrestricted approach pursued here
does not account for the time-reversal symmetry
relations between CC amplitudes. We are currently
exploring the implementation of various schemes for
accounting for time-reversal symmetry at the many-
particle level in general open-shell CC theory. A fully
Kramers-symmetry adapted formulation entails a non-
commuting CC formalism and will be implemented for
a newly-developed suite of general contraction methods
(J. Olsen, unpublished) including CC models.

We are furthermore exploring the calculation of
excited states of different double group symmetry rep-
resentation than the ground state, where a re-definition
of the Fermi vacuum via relativistic MCSCF calculations
yields the desired reference state. For the calculation of
excited states of the same symmetry as the ground state,
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we are considering an initial implementation of linear
response theory as it is utilized in the DIRAC program
package for Hartree–Fock and MCSCF wave functions.
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